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Abstract

The longitudinal and transverse coupling impedances of the Tevatron vacuum chamber are estimated
and summed up. The resistive-wall impedances of the beam pipe and the laminations in the Lambertson
magnets dominate below ~ 50 MHz. Then come the inductive parts of the bellows and BPM’s. The
longitudinal and transverse collective instabilities, for both single bunch and multi bunches, are studied
using Run II parameters. As expected the transverse coupled-bunch instability driven by the resistive-
wall impedance is the most severe collective instability. However, it can be damped by a transverse
damper designed for the correction of injection offsets. The power of such a damper has been studied.

*Operated by the Universities Research Association, Inc., under contract with the U.S. Department of Energy.
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I INTRODUCTION

Tevatron Run IT will be very different from Run I because there will be more proton and antiproton
bunches. Also the intensities of the bunches are different, and the Run II bunch lengths are shorter. Here,
we are going to give a detailed analysis of the collective instabilities to be encountered in this new run. The

run parameters are listed in Table I.

First, in Sec. II, the longitudinal and transverse coupling impedances of the Tevatron vacuum chamber
will be studied. These include the resistive wall, the Lambertson magnets, the beam-position monitors, the
bellows, the separators, and the rf cavities. In Sec. III, the effect of potential-well distortion driven by the
inductive part of the impedance is reviewed. Section IV deals with the longitudinal microwave instability
and Sec. V with the longitudinal coupled-bunch instability. Sec. VI is devoted to the longitudinal head-tail
instability which had been observed during Run I. Transverse microwave instability is pursued in Sec. VI.
We follow Sacherer’s analysis of transverse coupled-bunch instabilities driven by both the resistive wall and
sharp resonances of the rf cavities in Sec. VIII. The issue of transverse head-tail instabilities resulting from a
finite chromaticity is dealt with in Sec. IX. We discuss briefly, in Sec. X, the power required by the transverse
damper to correct an injection error and to cure the transverse dipole-mode collective instabilities. Finally,
in Sec. XI, we give a conclusion about the coupling impedances, the most dangerous collective instabilities,
and possible cures.

II COUPLING IMPEDANCES

II.1 RESISTIVE WALL

The Tevatron beam pipe is square in cross section with sides h = 6.0 cm and rounded corners. The

longitudinal and transverse impedances of the Tevatron due to wall resistivity at frequency w/(27) are [1]

: p
Zp =1 3 — 2.1
| =+ isen(w)] = (2.1)
. 8cpC
ZL =1+ jsenw)] —<5 (2.2)
where p = 7.4 x 1077 -m is the resistivity of the stainless steel wall and
2 2
5= P |2 (2.3)
|wlpopir |wlZo

is the skin depth. In the above, ug and Zy =~ 377 Q are, respectively, the magnetic permeability and
impedance of free space, and the relative magnetic permeability of the beam-pipe wall has been taken as
ur = 1. Note that we have been writing the formulas for impedances in such a way that they are valid for
both positive and negative frequencies. This is important, especially because it is the real parts of Z and

7, at negative frequencies that drive almost all the collective instabilities.

Putting in the ring circumference C' = 27 R with R = 1 km, we obtain

Z
2L _ fgn(e) +41 1245 02 02, 24)



Table I: Performance parameters for Run II.

Mode (n, X ng) 36 x 36 140 x 121
p per bunch N, 2.70 x 10! 2.70 x 10!
P per bunch Np 3.00 x 1010 3.00 x 1010
Total p 1.08 x 10'2 3.63 x 1012
Proton emittance ¢, 20 20 mm-mrad
Antiproton emittance €5 15 15 mm-mrad
Number of p bunches 36 121
Low beta (* 35 35 cm
Crossing angle 0 136 prad
Bunch spacing 395.44 131.81 us
Luminosity 8.60 x 103! 1.61 x 1032 cm—2s7!
Events per crossing 2.3 1.3
Total energy F 1000 1000  GeV
Rms bunch length 0.370 0.370 m

or 1.234 1.234 s
Rf voltage Vi¢ 1.00 1.00 MV
Rf harmonic h 1113 1113
Slippage factor n 0.002827 0.002827
Synchrotron tune v 7.077x 107%  7.077 x 1074
Rms momentum spread  9.262 x 107°  9.262 x 107°
Rms bunch area 0.3591 0.3591 eV-s

Z, = [sgn(w) + j] 27.66 |n+vg| /2 MQ/m , (2.5)

where v is the betatron tune.

For high frequencies, a more accurate expression for the resistive-wall impedances is [2]

—1

ZoCe [2\*™ he | Zyc ih2w imc?
7l =g 2oCC (2 1= sgn(w) ] (140m0) | o — iy . 2.
m com p L [ bgn(w)]]( =+ 0) 9 2/)|(U| 4(m+1) w ( 6)

What we have discussed so for are the lowest azimuthals m; therefore the longitudinal impedance Z| corre-

sponds to Z(‘)| in Eq. (2.6) and Z, corresponds to Zi-. We see that the resistive-wall impedances will follow
Egs. (2.4) and (2.5) for all practical frequencies, because they will roll off only at very high frequencies when

1/3
> ¢ (22 _
IZ 5 (ph2> 313 GHz . (2.7)

I1.2 LAMBERTSON MAGNETS

The main concern of the Lambertson magnets is the low-frequency component created by the exposure



of the beam to the bare laminations of the magnets. A rough estimation of the Lambertson magnets is made
by approximating the magnet as a series of annular laminations of 0.953 mm thick separated by cracks of
width A which is 3% of the lamination thickness. The inner radius is chosen to be b = 3.0 cm and the outer
radius d = 8.0 cm. The low-frequency image current traveling through the magnet is assumed to flow in one
lamination from the inner radius to the outer radius then cross over to the next lamination and flow from
the outer radius to the inner radius. Even though we are concerned about the low-frequency impedance,
due to the high relative magnetic permeability of the lamination, the skin depth for the frequencies we are
considering is still less than the lamination thickness so that the current is constrained to one skin depth in
the laminations. In this way the total resistance of the magnet is found by adding up the resistance along

the entire current path.

For the current traveling from the inner radius to the outer radius the net impedance is found to be
2y = [1+jsgn(w)] Zem ¥ (2.8)
7T5@ b
where py is the resistivity of the laminations and d, is the skin depth. For the current traveling along the
inner tip of the laminations the resistance per unit length is

Pe

Z) =+ jsgn)] 5 e

(2.9)

There are four 110.25-inch Lambertson magnets, or 11.20 m in total. We use a resistivity of p; =
2 x 1077 Q-m and a relative permeability of y, ~ 100 for the lamination material. The total low frequency

resistive wall impedance around the laminations is calculated to be
4 7.237
Z)/n = [sgn(w) + j] W Q. (2.10)

To estimate the transverse impedance we use the approximate relation

2¢ 7
z, === 2.11
L=3 (2.11)
and arrive at
Z) = [sgn(w) + j] 16.08 |[n+v5/ "2 MQ/m . (2.12)

It should be noted that the Lambertson magnets were assumed to have an circular geometry with inner
radius of b = 3.0 cm. The actual shape of the Lambertson is much different so this estimate can only be
approximate. Using a slightly larger inner radius can change the impedance by a significant amount; for

example, if b is 10% larger the transverse impedance will drop by ~ 25%.

Therefore, at low frequencies, the total impedances due to the stainless steel beam pipe and the Lam-
bertson magnets add up to

Z
21 = [sgn(w) + ] 19.680 |n|~2/2 Q1 (2.13)
n

Z) = [sgn(w) + j] 43.74 |n+vs/ "2 MQ/m . (2.14)

At higher frequencies, the cracks between the laminations of the Lambertsons behave like radial trans-

mission lines. We assume that the medium in the cracks of width A = 28.6 um has a dielectric constant



€. = 6, a relative magnetic permeability of u. =~ 1, and a high resistivity of p. &~ 100 Q-m. At radius r inside
the crack, the series impedance per unit radial length is
_ jwZope A

+ 1+ sgn(w)j] 22

Z ;
c 27r 271y

(2.15)

where the first term is the inductive contribution of the crack medium and the second term the resistivity
of the lamination walls depicted in Eq. (2.8). The shunt admittance per unit length is

Jwee 1\ 27nr
Y = 4+ — ) —, 2.16
( Zoc pm) A ( )

which represents the capacitance and shunt resistance of the crack. The wave number of the transmission
line is

B.=—2Y (2.17)

which is r independent. The characteristic impedance is

Z. = \/g , (2.18)

which is a monotonic decreasing function of frequency. The longitudinal impedance seen by the beam is
therefore
ZH = Z.tan Bed. (219)

where d. = d —b =5 cm is the depth of the crack or transmission line. Note that Eq. (2.19) reproduces the
low-frequency impedance of Eq.(2.8).

To study the resonances, first let us neglect the resistivity of the crack medium and also the lamination
walls. Then the wave number in Eq. (2.17) simplifies to 3. = \/écpicw/c. From Eq. (2.19), the nth resonance
occurs at the frequency

fn = (2n - l)ﬁm ) (220)

or 0.612, 1.835, 3.060, --- GHz for the first few. From Eq. (2.15), it is evident that the addition of the wall

inductance is equivalent to replacing the permeability of the crack medium by

L [pepuc
— 1 2.21
e e ( + A Z0|w| , ( )

which is now frequency dependent. Substituting into Eq. (2.20), we find that the wall inductance reduces
the resonance frequencies to 0.250, 0.979, 1.813, --- GHz. When the real part of the wall resistivity is
included, these resonances are highly damped and the resonant frequencies further reduced. The numerical

computations of the longitudinal and transverses impedances for the Lambertson magnets are plotted in
Fig. 1 up to 1 GHz. The transverse impedance Z, is estimated from the longitudinal Zj/n using the
relation (2.11). Therefore, they just differ by a constant and are plotted as the same curves but different
scales in the figure. Notice that the resonances are so much damped that only the first one survives and has
its frequency shifted to ~ 0.195 GHz. The small conductivity of the cracks plays a negligible role because it
is very much less than the lamination conductivity. It is worthy to point out that the higher-order resonances
do not show up because both Z|/n and the characteristic impedance Z. decrease with frequency. We also
see from Fig. 1 that the impedances Z/n and Z, have the n~1/2 low-frequency behavior of Egs. (2.10) and
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Figure 1: The real and imaginary parts of Z/n and Z, as functions of frequency
for the Tevatron Lambertson magnets. Note that Z) /m and Z, are drawn as the

same curves but at different scales.

(2.12), which are also plotted in the figure as reference. They start to deviate from this behavior only near
the first damped resonance. Actually, apart from this damped resonance, the impedances do not deviate too
—1/2

much from the n behavior even at higher frequencies.

I1.3 BEAM-POSITION MONITORS

There are M = 216 sets of beam position monitors (BPM’s) in the Tevatron; half of them detect
horizontally and half vertically. Each BPM consists of 2 cylindrical strip-lines of radius b = 3.5 cm, each
subtending an angle ¢y = 110° at the center of the beam pipe and is of length ¢ = 18 cm. Each strip-line
is terminated at both ends and forms a transmission line of characteristic impedance Z, = 50 2 with the

beam pipe wall that bulges out. The longitudinal and transverse coupling impedances have been calculated
to be [3]

2
7y =2M2Z, (@> (sian—g—kjsinw—gcosw—g) , (2.22)
2m c c c
c (4 . 2607
_ AN gz 2.2
Z, e (¢O> sin® o~ —+, (2.23)

where the factor % is inserted in the expression for Z, because one half of the BPM sets work for the

horizontal and one half for the vertical. At low frequencies, the impedances are inductive,

7 2
W jomz, (@> £ =50.363 Q ,
n T R

Z, =j0.431 MQ/m . (2.24)



At high frequencies, the reactive parts of the impedances oscillate between inductive and capacitive; for
example, the first zero occurs when f = ¢/(2¢) = 0.833 GHz. The real parts rise from zero quadratically
with frequency and Re Z| has a peak value of 2.02 kQ at 0.833 GHz, or Re Z)|/n = 0.116 €.

II.4 BELLOWS

There are about 1000 bellows in the Tevatron, each of which consists of 24 convolutions of width
1.04 mm between inner and outer radii of 3.94 and 4.58 cm as shown in Fig. 2. We run ABCI [4] to obtain
the wakes of azimuthal modes m = 0 and m = 1, from which the longitudinal and transverse impedances are
computed and plotted in Figs. 3 and 4. We see that there is a broad-band peaks centered around 7.0 GHz
with @ = 2 and shunt impedance Rs = 100  (per bellows). This gives for 1000 bellows a broad-band which
peaks at Re Z|/n =~ 0.68 Q and an inductive part Zm Z /n = Rs/(Qn,) =~ 0.34 Q.

For the transverse impedance in Fig. 4, there is also a broad-band peak around 7.0 GHz with @ ~ 0.73
and shunt impedance R, ~ 1.5 kQ/m (per bellows), or ReZ;, ~ 1.1 MQ/m for the whole ring. Below
~ 2 GHz, the reactive part of the impedance is Zm Z; =~ 0.40 MQ/m.

There are also sharp resonances. We believe, however, that they will be present at slightly different
frequencies for different bellows. Therefore, it is reasonable to expect them to add up to broader resonances
instead, but with much smaller areas under the impedance curves than the broad-bands at 7.0 GHz for both
the longitudinal and transverse impedances.
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Figure 2: A model of one Tevatron bellows used in ABCI.
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Figure 3: The real and imaginary parts of Z) in a Tevatron bellows as computed
by ABCI.
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Figure 4: The real and imaginary parts of Z; in a Tevatron bellows as computed
by ABCI.



II.5 SEPARATORS

There are 11 electrostatic separators in the Tevatron vacuum chamber. Their function is to separate the
proton and antiproton bunches so that they will not collide with each other except at designated interaction
points. We use the MAFIA code [5] to compute the wake potentials left by a short bunch for both the
monopole and dipole modes. Because of the limitation on number of grid points of the code, it is impossible
to input the exact details of the separators. Instead, we model a separator system as two plates 20 cm wide
and 2.57 m long inside a circular cavity chamber of length 2.75 m and radius 18 cm as illustrated in Fig. 5.
The beam pipe is circular in cross section with radius 4 cm. The grid size is 1 cm in the longitudinal and
horizontal directions, but 1.125 cm in the vertical direction. Next the Fourier transforms are computed to
arrive at the longitudinal monopole and impedance and transverse dipole impedance, which are plotted in
Fig. 6 and 7 up to 3 GHz [6]. We believe that this simplified model will retain all the essential features of
the impedances.

18 cm

8.5 cm

4 cm

......................................... 2.5 cm

2.75 m

Figure 5: The simplified separator system used in MAFIA computation of monopole
and dipole wake potentials.

The separator system can be viewed as two pill-box cavities joined by a transmission line. For a
closed-end pill-box cavity of radius 18 cm the first few monopoles resonances are at fy190 = 0.637 GHz,
fo20 = 1.46 GHz, fpso = 2.29 GHz, --- , and the first few dipoles resonances are at fi1190 = 1.02 GHgz,
fi20 = 1.86 GHz, fi30 = 2.70 GHz, --- . Actually these resonances are seen at 0.75, 1.51, and 2.24 GHz
in Fig. 6 and 1.23, 1.80, and 2.74 GHz in Fig. 7. The shifts are probably due to the fact the the cavities
are not closed. These modes are below the cutoff frequency of 2.87 GHz for the 4 cm-radius beam pipe.
However, some resonances are very much broadened. We believe that this is a result of the transmission
effect between the two cavities. We see from Figs. 6 and 7 that the 11 separators will give below ~ 0.6 GHz
the contributions Zm Z)/n = 0.21 Q and Zm Z; = 0.82 M€2/m, which are not too small.
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I1.6 RF CAVITIES

Some higher-order monopole modes of a Tevatron rf cavity have been measured by Sun and Colestock
[7] in 1995 using both the method of dielectric bead-pull and wire measurement. The resonances quoted in
Table II are based on bead measurements only, as the modes with wire present were shifted in frequency so
much to permit positive identification of the modes. A combination of dielectric beads, metallic beads and
needles was used to perturb the cavity. The ultimate accuracy was determined most likely by temperature
drifts in either the cavity or the network analyzer to about 0.5 degrees, corresponding to impedances (de-
pending on their @ values) to a few k). We also use the URMEL code [8] to compute some lower modes
and the results are listed also in Table II for comparison. We find that the URMEL resonant frequencies
and R/Q for these modes agree rather well with Sun’s measurement. On the other hand, the quality factors
@ do not agree so well. This may be because URMEL computes the modes of the bare cavity, while some of
these modes have actually been de-Qued passively. Also there are a lot of structures inside the cavity and

these structures have not been included in the simplified model of the cavity used in URMEL computation.

Table II: Longitudinal modes for one whole cavity.

URMEL Results Sun’s Measurements
Mode Type Frequency R/Q Q Frequency R/Q Q
(MHy) () (MH) ()

TMO-EE-1 53.49 87.65 9537 53.11 109.60 6523
TMO-ME-1 84.10 22.61 12819 56.51 18.81 3620
TMO-EE-2 166.56 18.47 16250 158.23 11.68 6060
TMO-ME-2 188.94 10.83 18235

TMO-EE-3 285.94 7.53 20524 310.68 7.97 15923
TMO-ME-3 308.46 4.07 22660

TMO-EE-4 402.69 4.93 25486 439.77 5.23 13728
TMO-ME-4 431.34 1.72 26407 424.25 1.28 6394
TMO-EE-5 511.69 5.57 25486 559.48 6.73 13928
TMO-ME-5 549.57 1.36 29453

748.18  10.90 13356
768.03 2.47 16191

There have not been any measurement for the dipole modes. Therefore, we need to rely on the URMEL
results, which are listed in Table ITI. Except for the fundamental, we believe that all these higher-order modes
will have frequencies varied slightly from cavity to cavity. Therefore, we expect them to be broadened or the

quality factors lowered when all the rf cavities of the Tevatron are considered.

10



Table III: Transverse modes for one whole cavity.

Mode Type Frequency R/Q Q
(MHZ)  (9/m)

1-EE-1 486.488 229.80 31605
1-ME-2 486.864 148.95 31487
1-EE-2 513.370 117.38 33262
1-ME-3 518.317 117.93 34008
1-EE-3 561.727 81.62 33029
1-ME-4 575.298 3.84 35810
1-EE-4 625.123 61.00 32598
1-ME-5 650.853 35.21 37592
1-EE-5 699.723 54.76 33407

I1.7 SUMMARY

We try to add up the individual impedances studied in the previous sections and arrive at the total in
Figs. 8 and 9. The impedances are plotted as functions of revolution harmonics and also frequencies. For
the contributions of the resistive wall and Lambertson magnets to the transverse impedance, the residual
betatron tune in Eqs. (2.5), (2.12), and (2.14) has been set to zero. Since logarithmic scales have been used,
only the positive-frequency parts of the impedances are plotted and the capacitive parts of the impedances
are not shown. The higher-order modes of the cavities have not been included, because they are too narrow
to be visible in log-log plots. The impedances of the 11 separators are included, although they have not been
plotted separately in order not to make the figures too crowded.

We see that the resistive wall and the Lambertsons dominate mostly below ~ 10 MHz. Then the
contributions of the bellows and BPM’s are clearly seen in the region of 10 MHz to ~ 1 GHz. The peaks
near 1 GHz are the resonances of the separators. Finally, there are the broad resonances of the bellows at
~ 7 GHz. Notice that the sharper resonances of the bellows around 2 to 3 GHz in Figs. 3 and 4 do not
show up in these plots. This is because the increment in frequency in the logarithmic scale has not been fine
enough. There are other contributions to the inductive impedances such as steps in the vacuum chamber,
kickers, etc. Therefore, it will be reasonable if we add ~ 1 to 2  and ~ 1 to 2 M£2/m, respectively, to the
longitudinal impedance per harmonic and transverse impedance around beam-pipe cutoff, which, for a square
beam pipe of side h = 6 cm, is roughly feutor = ¢/(2h) = 2.5 GHz. Thus, around feutost, the longitudinal
impedance per harmonic and transverse impedance are roughly 1.8  and 2.0 MQ/m,respectively. The
proton bunch has a rms bunch length of gy = 37 cm which is very much larger than the radius of the beam
pipe. The longest wavelength A that can perturb the bunch is roughly two times the total bunch length,
or A\ = 4v/60, = 3.63 m. Thus we can define a bunch cutoff frequency as f. ~ ¢/\ = 82.8 MHz. At this
frequency, Re Z/n~Im Z/n~ 3.0 Qand Re Z, ~Im Z, =~ 3.0 MQ/m.

11
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IIT POTENTIAL-WELL DISTORTION

The proton or antiproton bunches will see an rf voltage of V;y = 1 MV per turn, implying a coherent
synchrotron tune of vgo = 7.077 x 1074 at 1 TeV. For a bunch of rms length o,, = 1.234 ns, the rms
momentum spread is therefore

sy = % =90.262x 1077 (3.1)

where wy = 27 fy is the angular revolution frequency. Assuming a parabolic bunch distribution, the half
bunch length is 79 = \/5070 = 2.760 ns and the half momentum spread is dy = \/5050 = 2.071 x 1074
Therefore the bunch area is S = 570,05, E = 1.796 eV-s. It is worthwhile to point out that the bunch
area appears to be smaller than the actual Tevatron bunch area measured at injection. This is because
once the rms is given, the bunch area depends very much on the bunch distribution one prefers. There
are no tails in the parabolic distribution, the bunch area is therefore smaller. This can be thought of the
area of the core part of an actual bunch. For the cosine-square distribution p(7) = cos? 77/(2%)/7, we have
(7/0+)? =3n%/(37? —6) = 7.65 and the total bunch area will be much larger. On the other hand, the bunch
area of a bi-Gaussian distribution encircling 95% of the bunch particles is Sgs9, = 670,05, F = 1.796 eV-s

In this section, we prefer the parabolic distribution because it makes the analysis much simpler.

In the presence of an inductive part of the longitudinal impedance, the bunch will be lengthened to
7 = k7o above transition, and the momentum spread diminished to 5 =0d /k so that the bunch area remains

constant. The lengthening ratio k satisfies the quartic equation [9]
1=k*~kD, (3.2)

where

S\ 2 (3.3)

2wihViscos g7 1 | g

and ¢y is the synchronous angle which we take as zero here. We find that the lengthening ratios are k = 1.015,
1.023, 1.030, and 1.038, respectively, when the inductive part of the impedance per harmonic Z) /n|ina = 2,
3, 4, and 5 Q. The Tevatron bunch spectrum has a rms frequency of 1/(270,) ~ 130 MHz. From Fig. 8, it
is reasonable to assume Z), /M|inda = 2 to 3 Q. Thus the amount of bunch lengthening will not be appreciable.
The longitudinal impedance does have a real part which is of the same order of magnitude as the reactive

part. The real part will lead to a left-right asymmetric distortion, which we think would be small also.

The potential-well distortion can have other consequences. Usually we measure the total bunch length
27 and infer the half momentum spread ¢ and bunch area S according to

(3.4)

Because of the defocusing effect of the inductive impedance above transition, the incoherent synchrotron

tune v, will be less than the coherent synchrotron tune vyp. Comparing with Eq. (3.1), they are related by

Vso

Thus the effective rf voltage becomes
Vit
Vit = A (3.6)

13



Usually the incoherent synchrotron tune is difficult to measure. If one substitutes the coherent synchrotron
tune into Eq. (3.4), one would have estimated the momentum spread and bunch area too big by the factor

k2. This will give a wrong idea about the amount of Landau damping.

IV LONGITUDINAL MICROWAVE INSTABILITY

The beam current at a revolution harmonic n interacts with the longitudinal coupling impedance of
the vacuum chamber at the same harmonic to create a bucket at that harmonic and the beam particles
are bunched. This phenomenon of self-bunching is called longitudinal microwave instability. This bunch-
ing or growth will not take place if the spread in revolution frequency among the beam particles is large
enough. Applying to a bunch, we have the Boussard-modified Keil-Schnell stability criterion on the coupling

impedance [10, 11]:
2

n

nk

eIpeak

<F SEWHM - (4.1)

For a parabolic bunch, the form factor F &~ 1, Spwam = V20, and the peak current Tpeax = 31/ ((47 fo) with
I, being the average bunch current. The above can also be written as

ZH 167
—_ < _

n 31, (wO%)mafeff ) (42)
or »
Al g8.21/4 n
e h 3mo/4T,, (foSie)’” (E—/@> (WVat) (4.3)

Therefore if the bunch area S and momentum spread § are inferred from Eq. (3.4) using the coherent
synchrotron tune, and the effective rf voltage Vi¢,,, is replaced by the unperturbed V;: displayed in the
oscilloscope, one needs to divide the right sides of Egs. (4.1) to (4.3) by the 4th power of the potential-well
bunch lengthening factor k£ defined in Sec. III. For a fixed unperturbed Vi = 1 MV, and half bunch length
37 cm, the stability limit is most stringent at the storage energy of E =1 TeV and is given in Table IV for

various assumption of the inductive part of the impedance per harmonic Z|/n|ina.

Table IV: Bunch lengthening ratio £ and longitudinal microwave stability limits at
E =1 TeV versus the inductive part Z| /n|ind.

Zm 2! k U} timit
" |ind n
00 1.000 20.63 Q
10 1.008 20.01 ©
20 1.015 19.41 O
30 1.023 18.84 O
40 1.030 18.30
50 1.039 17.78 Q
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Microwave instability is essentially a coasting beam effect and self-bunching must occur much faster
than a synchrotron oscillation, otherwise the growth will decohere. Therefore the perturbation should have
a half-wavelength less than the length of the bunch, or a frequency f > 1/(47) = 90.6 MHz. From Fig. 8,
together with a generous allowance for other contributions not included, |Zj/n| of the Tevatron vacuum
chamber will be at most a few ohms, which is very much below the the Keil-Schnell limit listed in Table IV.

Thus the longitudinal microwave instability should not pose any problem in Run II.

V LONGITUDINAL COUPLED BUNCH INSTABILITIES

The long-range wake left by the higher-order resonant modes of the rf cavities may couple the longi-
tudinal motions of the bunches in the Tevatron. Assuming M bunches of equal intensity equally spaced in
the ring, there are p =0, 1, ---, M —1 modes of oscillations in which the center-of-mass of a bunch lags
behind its predecessor by the phase 27u/M. In addition, an individual bunch in the p-th coupled-bunch
mode can oscillate in the synchrotron phase space about its center-of-mass in such a away that there are
m =1, 2, --- nodes along the bunch longitudinally (not including the ends). For example, m =1 is the
rigid dipole mode, where the bunches move rigidly as they execute synchrotron oscillations, m = 2 is the
quadrupole mode where the bunch head and tail oscillate longitudinally 180° out of phase. Actually, this
has been a simplified description of the modes of perturbation inside a bunch. The full description involves
two eigen-numbers, for example, the the azimuthal and the radial.

If the driving narrow resonance falls on a p-th coupled bunch line, Sacherer’s growth rate for the mth

mode is [12] 1 MRS
_en b{lsJO

Tmp 2nEvsBy

DFy(A¢) , (5.1)

where By = 7, fo is the single-bunch bunching factor with 7, = 27 being the total bunch length, vy is
the perturbed synchrotron tune, R, is the shunt impedance of the sharp driving resonance at frequency
fr = wy/(2m). The factor D is a function of the decay decrement a7y, between successive bunches, where
a = w,-/(2Q) is the HWHM of the resonance of quality factor ) and 7eep, is the bunch separation. It is
defined as

(o)
D(aTsep) = —i2aTsep Z e 2mikp/M—k(a—iQ)Tep gipy kwr Teep (5.2)
k=0
The maximum magnitude of D is shown in Fig. 10. The form factor for parabolic bunches is given by
16m
Fm(A(b) = A—(b [an(%A(b) - Jm+1(%A¢)Jm—1(%A¢)] ) (5-3)

where A¢ = 27 f,7, is the phase change of the resonator during the bunch passage from head to tail, and
is plotted in Fig. 11. Note that mode m peaks roughly at A¢ = mm. This is reasonable because, as was
mentioned above, mode m represents a longitudinal variation along the bunch with m nodes (not including
the ends) and it will be most easily excited when the bunch sees a phase variation of mm of the driving
resonance as it passes through the cavity gap from head to tail. Note that Fj, decreases as m increases,

implying that the higher m modes will not be excited so easily.

The rf voltage during the whole ramp is about 1 MV. Therefore the growth will be most severe at the
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injection energy of E = 150 GeV. The growth rates for the first few modes are listed in Table V for the

36 x 36 scenario.

Table V: Longitudinal coupled-bunch growth rates driven by the higher-order modes

of the rf cavities at injection for the 36 x 36 scenario in Run II.

fr Ry Q A Growth Rate in sec™!
MHz kO rad m=1 m=2 m=3 m=4 m=5 m=6
56.5 68 3620 0.88 0.606 0.010 0.000 0.000 0.000 0.000
158.2 70 6060 2.45 1.415 0.189 0.009 0.000 0.000 0.000
310.7 124 15923 4.82 2329 1443 0.305 0.033 0.002 0.000
424.2 8 6394 6.58 0.089 0.124 0.056 0.012 0.001 0.000
439.8 71 13728 6.82 0.714 1.089 0.542 0.129 0.018 0.002
559.5 93 13928 8.68 0.469 1.103 1.071 0.478 0.120 0.019
748.2 145 13356 11.60 0.484 0.789 1.333 1.397 0.787 0.269
768.0 39 16191 1191 0.128 0.206 0.342 0.386 0.236 0.087
Laudau Damping rate (s71) 0.000 0.555 0.679 0.784 0.877 0.961

These higher-order modes were measured by Sun [7] in 1995 using the method of dielectric bead
pull. Here, we assume that the peak of each resonance is at exactly a synchrotron line on the left side
of the revolution harmonic. Also, the higher-order resonances of each cavity will not be at exactly the
same frequency. In other words, for all the 8 cavities, we assume the resonances will be de-Qued 8 times.
Therefore, for each mode, the shunt impedance of one cavity has been used in Eq. (5.1) when the computation

is performed.

The spread of the synchrotron frequency due to the nonlinear sinusoidal rf wave form can be written

Aws, 2 (1+T2\ (hr,fo\?
s - =2 —0.014 Af, =125 H 4
o 3(1—F2>( 5 0.0143 or Afs 5 Hz , (5.4)

when the nominal synchrotron tune v, = 1.83 x 1073 is assumed at the injection energy of 150 GeV with

as

an rf voltage of 1 MV, and the synchronous phase ¢ = sin ! T is taken to be zero. This supplies Landau
damping. The mode will be stable if
1
- < \/4—%&)3 =1.96y/m s . (5.5)
p
The Landau damping rates are listed in the last column of Table V, and the modes that receive not enough

Landau damping are underlined.

For the 140 x 121 scenario, the growth rates can be obtained by linearly scaling the number of bunches

M. Of course, the growth of all modes will be faster.

We would like to point out that the inductive impedance gives rise to an incoherent synchrotron

frequency shift of
Awg 31, Im(Z) /n)
- = = —0.0463 Af,=—4.05H 56
Ws 2712hV,s cos ¢ BY or Is z, (5.6)
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Figure 12: Schematic drawing showing the incoherent spread of Afys ~ 1.25 Hz is
shifted by —4.05 Hz from the coherent synchrotron frequency fso, thus not being
able to provide Landau damping to the dipole (m = 1) modes.

where Zm(Z)/n) = 3 Q has been used. However, the coherent synchrotron frequency remains the same as
the unperturbed synchrotron frequency fso. Thus the incoherent spread of the synchrotron frequency will
not cover fso9, and will not supply any damping to the m = 1 mode. This is illustrated in Fig. 12. The
sizes of the incoherent frequency shift and spread depend rather sensitively on the bunch distribution. For
example, for a cosine-square distribution and a Gaussian distribution with the same rms bunch length, the
incoherent frequency shifts will be, respectively, ~ 1.74 or ~ 2.97 times larger than that of the parabolic
distribution. Also due to the nonuniform distribution gradients in these two distributions, the incoherent
frequency spreads will also be broader. Nevertheless, the conclusion is qualitatively the same. For all
reasonable distributions, the incoherent frequency spread will not be able to overlap the coherent dipole

synchrotron frequency, resulting in no Landau damping.

We see from Table V that the azimuthal mode m = 1 driven by the resonance at 310.7 MHz will growth
at a rate of 2.33 per second. Although the growth rate is small, however, the growth is severe because the
ramp rate of the Tevatron is slow; the energy reaches only ~ 220 GeV after ramping for 20 s. In computing
the growth rates in Table V, we have assumed that the resonant peaks of the 8 cavities do not fall on top
of each other and the effective peak of the sum broadened. We took the shunt impedance to be the shunt
impedance of the resonance of one cavity and increase the quality factor 8-fold. In this way, the FWHM is
3.27 revolution harmonics and the decay decrement of the resonant field is a7y, = 0.194. From Fig. 10, it is
clear that the function D(a7sep) = 1. However, if we assume the resonant peaks of the 8 cavities to fall on
top of each other, the situation will be different. Although the decay decrement is 0.0242 and D is still equal
to unity, the FWHM is only 0.409 revolution harmonic. This implies that resonant may not fall on top of
an upper synchrotron side-band of a harmonic line, and if this happens the growth rate will be very much
reduced. Unfortunately, the resonant frequencies measured is not accurate enough for us to decide whether

they are near a revolution harmonic or not.

If the growth turns out to be harmful, a fast 36 x 36 bunch by bunch damper may be necessary to damp
the dipole mode (m = 1). A damper for the quadrupole mode (m = 2) may also be necessary. This consists
essentially of a wall-gap pickup monitoring the changes in bunch length and the corresponding excitation

of a modulation of the rf waveform with roughly twice the synchrotron frequency. The Tevatron bunches
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will be formed by coalescing 9 or more bunches in the Main Injector (formerly in the Main Ring). Usually
there will be a 10% difference in the number of particles in the final bunches. This difference will break the

symmetry of the coupled-bunch system and lead to some damping also.

We would like also to compute the longitudinal coupled bunch growth rates for Run I, where there
were only 6 proton bunches with a rms length of 85.5 cm and the same number of protons per bunch as
in Run II. A smaller number of bunches will certainly reduce the growth rates. The longer bunch length
will make the driving force less effective because of the much larger change in phase of the resonator during
the passage of the bunch. Also a bigger bunch in the longitudinal phase space will provide more Landau
damping. The growth rates at 150 GeV are listed in Table VI. We see that Landau damping prevents all

Table VI: Longitudinal coupled-bunch growth rates driven by the higher-order
modes of the rf cavities at injection for the 6 x 6 scenario in Run I.

fr Ry Q A Growth Rate in sec™!
MHz kO rad m=1 m=2 m=3 m=4 m=5 m=6
56.5 68 3620 1.91 0.090 0.007 0.000 0.000 0.000 0.000
158.2 70 6060 5.34 0.090 0.072 0.019 0.003 0.000 0.000
310.7 124 15923 10.48 0.035 0.067 0.105 0.081 0.034 0.009
424.2 8 6394 14.32 0.001 0.003 0.003 0.005 0.005 0.003
439.8 71 13728 14.84 0.010 0.022 0.027 0.037 0.045 0.032
559.5 93 13928 18.88 0.009 0.016 0.025 0.032 0.033 0.043
748.2 145 13356 25.25 0.008 0.014 0.022 0.028 0.033 0.042
768.0 39 16191 25.92 0.002 0.004 0.006 0.008 0.009 0.011
Laudau Damping rate (s71) 0.000 2.626 3.212 3.709 4.149 4.546

azimuthal coupled-bunch modes with m > 1 from instabilities. The only unstable modes are the dipole

modes which have no Landau damping. However, the highest growth rate is only 0.090 s~1.

Such slow
rate would be damped by the slight unequal number of particles in the bunches. This may explain why no

longitudinal coupled-bunch instabilities had been observed during Run I.

VI LONGITUDINAL HEAD-TAIL INSTABILITY

In general, the slippage factor n is not an even function of momentum offset and the particle trajectory
will be asymmetric about the on-momentum axis. When the first-order coefficient ap; of momentum
compaction factor is positive, the particle spends more time at positive momentum offset than at negative
momentum offset. Thus the bunch becomes relatively longer at positive momentum offset than at negative
momentum offset, as is illustrated in Fig. 13. The bunch will therefore lose more energy in the lower
trajectory than in the upper trajectory. The amplitude of synchrotron oscillation will therefore grow. This
phenomenon is called longitudinal head-tail instability and was first observed at the CERN PS by Boussard
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Figure 13: A particle trajectory is asymmetric about the on-momentum axis when
the slippage factor is not an even function of momentum offset. The bunch will be
longer at positive than negative momentum offset when the first-order momentum
compaction agay > 0 and above transition.

and Linnecar [13]. The growth rate is given by
=1 (6.1
where the energy loss per particle per turn is
Ulo,) = &N / dw |p() [ Re 2y () | (6.2)

and ( 3)
ap(lar — N+ 35 3
ol mnte) 3 (6.3)
n 2

denotes the asymmetry, which has been measured to be x ~ +1.17 for the Tevatron. In the above,

p) = 5 [ drplr)e (6.4)

is the spectrum of the bunch of rms length o, with a distribution p(7) normalized to unity.

If the driving impedance Re Z| comes from a narrow resonance with shunt impedance R at resonant

frequency w,/(27) and quality factors @), we have for the energy loss per turn

TRyw,e? N
Q

for a bunch containing N particles. For a broad-band impedance, U(o,) drops much faster with bunch length.

- 2
U(UT) = |,0(w7«)| ) (6'5)
For a general resonance, we have computed the asymmetric energy loss for a parabolic bunch distribution,

dU(O’T)U B 9¢’Nw, R,
do, T 4sQ

2
{—3 [e72¢ sin(2s2+26) — sin 26
z
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12
+ — [e7%% sin(252+36) + sin 30] + —= e %% gin(2s2+46)
z

+ = [e72¢* sin(252+56) + sin 50| } , (6.6)

where z = \/5w,0,, ¢ = cosf = 1/(2Q), and s = sinf. This is plotted in Fig. 14 for the case of a sharp
resonance and in Fig. 15 for the case of a broad-band with @@ = 1. As is shown in Fig. 14, the asymmetric
energy loss vanishes when the bunch length goes to zero, because the change in bunch length from positive
momentum offset to negative momentum offset also goes to zero. On the other hand, when the bunch length

is very long, the asymmetric energy loss will also be small, because the energy loss for a long bunch is small.

The fundamental resonance of the 8 rf cavities serves as a good driving force for this instability. Each
cavity has resonant frequency f, = 53.1 MHz, R, = 1.2 M), and @ = 7000. For Run I, where the rms
bunch length was o, ~ 2.684 ns or f.o, ~ 0.1425, (dU/do,)o, ~ —0.3890 e2Nw, Rs/Q is large and leads to
a growth rate of 77! = 1.433 x 1073 s~ ! at the injection energy of E = 150 GeV for a bunch containing
N = 2.70 x 10" particles. However, for Run II, the bunch will be much shorter. With ¢, = 1.234 ns or
fror &~ 0.0655, the asymmetric energy loss (dU/do,)o, ~ —0.1464 > Nw, Rs/Q is much smaller and the
head-tail growth rate becomes 77! = 0.539 x 1072 s~!. As is shown in Fig. 14, we are on the left side of the
(dU/dor)o, peak; therefore a shorter bunch length leads to slower growth.

The broad-band impedance can also have similar contributions since the resonance frequency is usually
a few GHz and Re Z is large although Z/n is just a couple of ohms. Now w0, falls on the right side of
the (dU/do;)o, peak instead. We expect shorter bunch lengths to have faster growth rates, as is indicated
in Fig. 15. Table VII shows the longitudinal head-tail growth rates for different resonant frequencies and
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Figure 14: Plot of differential bunch energy loss (dU/do;)o, verses f.o, due to a
sharp resonance. Note that the effect on the Run IT bunch is much less than that
on the Run I bunch because of the shorter Run II bunch length.
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quality factors; Zj/n = 2 Q has been assumed. The growth rates driven by the fundamental rf resonance
are also listed in the last row for comparison. It is obvious that the longitudinal head-tail instability for
Run I is dominated by the rf narrow resonance and that for Run II by the broad-band impedance instead.
We observed a growth time of ~ 250 s in Run I. From Table VI, it is very plausible that the growth of this
head-tail instability will be at least as fast as that in Run I.

Table VII: Growth rates for a broad-band resonance of Zj/n = 2 Q at various

frequencies and quality factors.

fr (GHz) Q Growth Rate (s71)
Run I Run I
1 1 0.178 x 1073 1.829 x 1073
1 3 0.022 x 1073 0.267 x 1073
2 1 0.089 x 1073 0.915 x 1073
2 2 0.023 x 1073 0.249 x 1073
1 5 0.009 x 1073 0.114 x 1073
2 3 0.011 x 1073 0.117 x 1073
2 4 0.006 x 1073 0.070 x 1073
Fundamental Rf Resonance 1.433 x 1073 0.539 x 1073
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VII TRANSVERSE MICROWAVE INSTABILITY

Similar to the longitudinal case, the beam current at a certain betatron spectral frequency (n,+v3) fo
interacts with the transverse impedance to create a transverse deflecting force leading to an enhancement
of the amplitude of the betatron oscillation. Here, n,. is a revolution harmonic and v is the betatron tune.
We need to consider only the slow wave that can cause instability and therefore n, < 0. This growth can be
damped by the incoherent spread of the betatron spectral line under consideration. As a result of momentum

spread ¢, this incoherent spread is

Afg = [-(ny +vgo)n + €] fod (7.1)

where vgg is the on-momentum betatron tune and £ the chromaticity. Applying to a bunch, we can therefore
write down a Keil-Schnell type of stability criterion [14]:

4\/2F v

71| <
70 < S g

(Ine| = vgo)n + €| dpwrm (7.2)

where R is the mean radius of the accelerator ring. Similar to our discussion in Sec. IV, if the momentum
spread is inferred from Eq. (3.4), it will be diminished by the square of the bunch lengthening factor k as a

result of the inductive impedance.

Since the bunch length is much larger than the beam pipe radius, the half-wavelength of the driving
impedance force will be less than the full length of the bunch. We therefore take the perturbing frequency
as fr = 1/(47) = 90.6 MHz or |n,| = 1/(47fy) = 1899, and obtain the stability limit |Z,| < 3.26 MQ/m
at zero chromaticity and injection energy. Note the |Z, | near this frequency is 3 to 4 MQ/m from Fig. 9
together with other discontinuities of the vacuum chamber. Thus, transverse microwave instability will be
plausible in Run II. However, a chromaticity of £ = +10 implies raising |n,| effectively by £/n = 3537 and
increasing the stability limit to |Z) | < 9.41 MQ/m. On the other hand, a negative chromaticity will lower
the stability limit and lead to instability.

VIII TRANSVERSE COUPLED-BUNCH INSTABILITIES
VIII.1 RESISTIVE WALL

A most serious transverse coupled-bunch instability in a storage ring may be driven by the resistive
wall. If there are M, identical equally spaced bunches in the ring, there are 4 = 0, - -+, Ms—1 transverse
coupled modes when the centers of mass of one bunch lags behind its predecessor by the betatron phase of
2/ M. At the same time, each bunch can execute longitudinal motion with m = 0, 1, --- nodes. The
growth rate for the mode pm is [15]

1 1 eMIbC
= Re Z [(kM, — B (or — o1
Tum 1+m 47TV[3E ; l[( s —pHtvst ml/s)wo] 7TL(WTL X) , ( )

where M is the number of bunches. Strictly speaking Eq. (8.1) is correct only if M = M, or a completely
filled ring. For example, in the 36 x 36 scenario, the bunch spacing is 21 buckets; therefore M = 36 and
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m
normalization in Eq. (8.3), these are exactly the power spectra hy,.

M, = 1113/21 = 53, and in the 140 x 121 scenario, M = 140 (for protons) and M, = 159. There are many

unfilled buckets in both scenarios; thus Eq. (8.1) will not be an accurate description of the beam dynamics.

As the frequency w — =0, the real part of the resistive-wall impedance approaches first :|:|w|_1/ 2. then
|w|~! when the skin depth exceeds the thickness of the pipe wall, and finally zero when the frequency is
exactly zero. At the residual betatron tune of the Tevatron, [v3] ~ 40.4, we are in the regime of =+ |w|~!/2
dependency. Therefore, there is always a mode u that corresponds to a large negative Re Z, and drives
the transverse coupled-bunch instability. For example, with the betatron tune vg = 20.57, mode y = 21 or
frequency —0.43wp/(27) with & = 0 in the summation of Eq. (8.1) contributes the largest negative Re Z ,
which is —66.70 MQ/m according to our former estimate made in Sec. II.2. The next contribution with
k=1 will give Re Z, = +6.03 MQ/m in the 36 x 36 scenario and +3.47 MQ/m for protons in the 140 x 121
scenario. The average current per bunch is I, = 2.064 mA. The growth rate is therefore given mostly by
the k& = 0 term in the summation and is very insensitive to the choice of My in Eq. (8.1). For such a low
driving frequency, only the lowest longitudinal mode m = 0 will be excited. The growth rates after doing
the actual summations are 31.0 and 120.6 s~, respectively, for the two scenarios. Modes u = 22, 23, 24, - - -
are also unstable; the growth rates are, respectively, 16.9, 12.8, 10.6, --- s~!, and 66.1, 50.6, 42.5, - -- s~ !
for the two operating scenarios. The computation has been performed at zero chromaticity (£ = 0), so that
the chromatic phase x = &wot, /n = 0. Also, we have used the form factor F}(0) = 8/7% ~ 0.811, where,
for convenience, Sacherer’s sinusoidal modes of excitation have been assumed. These growth rates are much
larger than those in Run I because there are more bunches. If one operates at chromaticity ¢ = +10, xy = 5.85,
F}(5.85) &~ 0.155 from Fig. 16. The growth rates for g = 21 drop to 5.9 and 9.7 s™1, respectively, which can
be damped easily by a tune spread. For example, a tune spread of Avg = 0.0001 will lead to a spread of
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betatron angular frequency of Avgwy = 30 s™1, and will damp a growth rate up to ~ 17.0 s=! (FWHM for
a Gaussian spread) [15]. For further discussion, we need to study the sinusoidal modes of excitation in the

next subsection.

VIII.2 SINUSOIDAL MODES

The Sacherer’s sinusoidal modes of excitation consist of the orthonormal set

cos(m—l—l)ﬂl m=20,2,---,
TL
pm(T) = ’ (82)
sin(m+1)r— m=1,3,---,
TL
such that p,,(7) has m nodes along the bunch not including the ends. The power spectrum is proportional

to
4(m+1)% 1+ (=1)™cosy

w P
where y = wr, /m and w = kM — p+ vg + mvg — x/7,. They are plotted in Fig. 17. The normalization of

hom, (w ) =

(8.3)

hm(w) in Eq. (8.3) has been chosen in such a way that, when the smooth approximation is applied to the

summation over k, we have

“+oo

+oo
BS hw)~ 2 / B (@)deo = 1 . (8.4)

MWQ —o

k=—o00
Here B = Muwyt, /(27) is the bunching factor, or the ratio of full bunch length to bunch separation. Then

the form factor F),(w) in Eq. (8.1) just equals A, (w).

m=0 T
! | . | | | | i | ! |
—6 —5 >y -3 —z —1 o 1 2 3 5 6
T/ 7T
m=1 -
L L L L L L L L L
—6 —5 vy -3 —2 —1 0 1 B 3 4 5 6
- T/ TT
m==2 T
PR . . . . . . . . .
—6 —5 —a —3 —2 —1 0 1 2 3 4 5 6
- wTL/ T
m=3 -
. . . . . ; ; . . . .
—6 —5 —a —3 —2 —1 o 1 2 5 6
T/ TT

Figure 17: Power spectra h,,(w) for modes m = 0 to 3 with zero chromaticity.
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The Sacherer integral equation for transverse instability is an eigen-value-eigen-function problem when
the unperturbed longitudinal distribution go(r) in the longitudinal phase space is given. Physically, the
modes of excitation p,,(7) are the projection of the eigen-functions in the longitudinal phase space onto the
time axis. The sinusoidal modes corresponds to the water-bag distribution?

in phase space, so that the linear distribution is

— 2 (8.5)

2 _ 2)=1/2 in the longitudinal phase space, p,,(7) are the Legendre polyno-

For the distribution go(r) o (7
mials and the Fourier transforms the spherical Bessel functions j,,. When go(r) is bi-Gaussian, p,, () are
Hermite polynomials. Sometimes the growth rates computed are rather sensitive to the longitudinal bunch

distribution assumed. Therefore, results in this section are estimates only.

We now learn that a chromaticity of £ = n/(for,) = +10.73 will push the power spectra in Fig. 17 to
the right (or positive frequency side) by two w7, /7 units. The m =0 will then only see the positive-frequency
impedance and no instability will result. However, the m = 1 mode will now peak at zero frequency and the
resistive wall impedance will drive the m = 1 mode unstable and a quadrupole transverse damper will be
required.

VIII.3 TRANSVERSE COUPLED-BUNCH INSTABILITY DRIVEN BY RESONANCES

The narrow transverse resonant modes of the rf cavities will also drive transverse coupled-bunch in-
stability. The growth rate is described by the general growth formula of Eq. (8.1). When the resonance is

narrow enough, only one frequency —w, /(27) contributes in the summation. Thus the growth rate becomes

1 1 eMIyc
T lim ReZ,(wn)F, - 8.6
Tum 14+m 4nvgFE + (wT) m (WTTL X) ( )

where w; is negative. We calculated the growth rates of modes driven by the nine higher-order dipole modes
computed by URMEL in Table III. The results are listed in Table VIII.

Some comments are in order. Here, we assume that the higher-order modes of the 8 rf cavities do not
fall on top of each other at exactly the same frequency. In other words, we assume the resonances summed
over 8 cavities will be de-Qued 8 times and the shunt impedance corresponding to a certain mode will be the
same as that for a single cavity. From Table VIII, we see that the frequencies of the lowest 9 higher-order
modes range from 486.5 to 699.7 MHz. Therefore w,7, /m — x/7 (w, is negative) ranges from 5.4 to 7.4
for zero chromaticity. From the power spectra in Fig. 17, this implies negative resonant frequencies w, are
exciting the modes that peak in the region, or modes roughly from m = 4 to 7. These are listed in column 4

of the table. We can see, for example, that the growth rate driven by the first resonance at zero chromaticity

tIn the Sacherer integral equation for transverse instability, the weight function is W (r) = go(r). However, in the integral
equation for longitudinal instability, the weight function is W (r) = —r~1g{(r). As a result, for that equation, the sinusoidal
modes correspond roughly to go(r) o< (#2 — r2), the Legendre modes correspond to go(r) o< (72 — r2)1/2. But the Hermite

modes correspond to the same bi-Gaussian distribution.
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Table VIII: Growth rates for transverse coupled-bunch modes driven by higher-order

dipole modes of the rf cavities.

fr Ry Q  mpk Growth Rate (s71)

MHz Q/m Growth m=0 m=1 m=2 m=3 m=4 m=5
Chromaticity £ =0

486.5 7262 31605 4.4 4.173  0.001 0.008 0.008 0.057 0.346 0.276
486.9 4689 31487 4.4  2.694 0.001 0.005 0.005 0.036 0.223 0.179
513.4 3904 33262 4.7 2243 0.001 0.001 0.008 0.007 0.135 0.180
518.3 4010 34008 4.7 2304 0.002 0.001 0.008 0.005 0.128 0.189
561.7 2695 33029 5.2 1.549 0.001 0.000 0.004 0.001 0.031 0.121
575.3 137 35810 5.4  0.079 0.000 0.000 0.000 0.000 0.001 0.006
625.1 1988 32598 5.9 1.142 0.000 0.001 0.000 0.004 0.000 0.040
650.9 1323 37592 6.2 0.760 0.000 0.000 0.000 0.002 0.000 0.014
699.7 1829 33407 6.7 1.051  0.000 0.000 0.001 0.000 0.003 0.002
Chromaticity &€ = 410

486.5 7262 31605 6.2 4.173  0.000 0.003 0.001 0.009 0.003 0.066
486.9 4689 31487 6.2 2.694 0.000 0.002 0.000 0.006 0.002 0.042
513.4 3904 33262 6.5 2.243 0.000 0.001 0.001 0.002 0.005 0.012
518.3 4010 34008 6.6  2.304 0.000 0.000 0.002 0.002 0.006 0.009
561.7 2695 33029 7.1 1.549 0.000 0.000 0.001 0.000 0.004 0.000
575.3 137 35810 7.2 0.079 0.000 0.000 0.000 0.000 0.000 0.000
625.1 1988 32598 7.8 1.142 0.000 0.000 0.000 0.001 0.000 0.003
650.9 1323 37592 8.0 0.760 0.000 0.000 0.000 0.001 0.000 0.002
699.7 1829 33407 8.6 1.051  0.000 0.000 0.000 0.000 0.001 0.001
Chromaticity £ = —10

486.5 7262 31605 2.5 4.173  0.014 0.048 0.476 0.483 0.054 0.018
486.9 4689 31487 2.5 2.694 0.009 0.030 0.306 0.313 0.035 0.011
513.4 3904 33262 2.8 2243 0.009 0.003 0.166 0.285 0.074 0.002
518.3 4010 34008 2.9 2304 0.009 0.002 0.154 0.294 0.087 0.001
561.7 2695 33029 3.3 1.549 0.003 0.003 0.029 0.162 0.122 0.007
575.3 137 35810 3.5 0.079 0.000 0.000 0.001 0.007 0.007 0.001
625.1 1988 32598 4.0 1.142 0.000 0.004 0.000 0.042 0.113 0.049
650.9 1323 37592 4.3 0.760 0.000 0.002 0.001 0.012 0.066 0.048
699.7 1829 33407 4.9 1.051 0.001 0.000 0.004 0.000 0.046 0.088
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actually peaks at m =4. Since the growth rates are affected so much by the mode of excitation, we also
give the bare growth rate for each resonance in column 5 when the form factor F), and the factor (1+m)~*
are not included. We see that increasing the chromaticity to £ = +10 shifts the mode spectra to the right
(positive frequency side); so only modes of much higher m will be excited. On the other hand, decreasing
the chromaticity to & = —10 shifts the mode spectra to the right and lower m modes will be excited. As a
whole, the growth rates are slow. Since a tune spread of Avg = 0.0001, for example, will damp a growth
rate up to ~ 17 s~!. Therefore, transverse coupled-bunch instabilities driven by the higher-order modes of

the rf cavities should not be a problem at all.

IX TRANSVERSE HEAD-TAIL INSTABILITY

Let us now consider the short-range field of the transverse impedance; i.e., Z, (w) when w is large.
This is equivalent to replacing the discrete line spectrum by a continuous spectrum. Since Re Z) (w) is
antisymmetric, the summation in Eq. (8.1) when transformed into an integration will vanish identically at

zero chromaticity. There can only be instability when the chromaticity is nonzero.

Since the transverse impedance appears to be dominated by the resistive wall, the growth rate can be
computed exactly if we substitute the impedance in Eq. (8.1) by the resistive wall formula. The result of

integration is [15]

1 1 eMIbC( s

- =) 12 Fu) (0.1

a - 14+m 4rvgFE

where |Z | (wo)] is the magnitude of the resistive wall impedance at the revolution frequency. Note that the
bunching factor contains a factor of M, so that the growth rate is actually independent of the number of
bunches. This is to be expected because the growth mechanism is driven by the short-range wake field and
the instability is therefore a single-bunch effect. This explains why the growth rate 7,,,'does not contain the

the subscript p describing phase relationship of consecutive bunches.

The form factor is given by

m \/>/Oo dy hm y yi) h7n(y+y€)] ) (92)

where h,, are the power spectra of mode m in Eq. (8.3) written as functions of y = w7, /7 and ye = x/7 =
Ewot, /(mn). The first term in the integrand comes from contributions by positive frequencies while the

second term by negative frequencies. The form factors for m = 0 to 5 are plotted in Fig. 18.

For small chromaticity ¢ S 4, x S 2.3 the integrand in Eq. (9.2) can be expanded and the growth rate
becomes proportional to chromaticity. From the transverse resistive wall impedance in Eq. (2.12), we obtain
|Z 1 (wo)| = 61.85 MQ/m. The growth rates for various modes have been computed and listed in Table IX,
where negative growth rate implies damping rate. We see from Table VIII that mode m =0 is stable for
positive chromaticity. This is expected because the excitation spectrum for this mode has been pushed
towards the positive-frequency side. All other modes m > 0 should be unstable because their spectra see

relatively more negative Re Z, . However, the growth rate for m=4 is tiny and mode m =2 is even stable.
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Figure 18: Form factor F,(x) for head-tail instability for modes m = 0 to 5.

This can be clarified by looking closely into the excitation spectra in Fig. 18. We find that while mode m=0
has a large maximum at zero frequency, all the other higher even m modes also have small maxima at zero
frequency. As these even m spectra are pushed to the right, these small central maxima see more impedance
from positive frequency then negative frequency. Since these small central maxima are near zero frequency
where | Re Z | is large, their effect may cancel out the opposite effect from the larger maxima which interact
with the impedance at much larger frequency where | Re Z| | is smaller. This anomalous effect does not exist
in some other longitudinal bunch distributions like go(r) o< (72 —72)~'/2, because the corresponding power

spectra are |j,,(w)|? (spherical Bessel function) which vanish at zero frequency when m > 0.

Table IX: Growth rates of transverse head-tail modes driven by the resistive wall

impedance when x < 2.3.

Mode Form Factor Growth Rate
m g1
0 —0.1495 y —9.433¢
1 +0.0600 x 1.893¢
2 —0.0053 —0.113¢
3 +0.0191 x 0.301¢&
4 +0.0003 x 0.003¢&
5 +0.0098 x 0.103¢&
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The head-tail instabilities can be damped by the incoherent spread in betatron frequency. As mentioned
in Sec. VIIL.3, a tune spread of Avg = 0.0001 is capable to damp a growth rate of ~ 17.0 s~1. Therefore,
the monopole mode may not be damped if the storage ring runs at a few units of negative chromaticity.
Running at positive chromaticity, however, the m = 0 mode is stable, while the growth rates of other m > 0
modes are small, if unstable. As an example, at £ = +10 or x = 6, the linear approximation will no longer
valid. From Fig. 18, we see that both modes m = 0 and m = 1 are stable. With F; ~ —0.1, the growth rate

for the m = 1 mode is only ~ 3.4 s~! which will be damped by a small tune spread easily.

X FAST TRANSVERSE DAMPER

A fast bunch-by-bunch transverse damper may be required to damp the bunches that have injection

errors and also to cope with the possible transverse coupled-bunch instabilities.

The most important properties of a bunch-by-bunch damper are fast rise time, low pulse voltage, and
low peak power. In order that the damper can kick bunch by bunch, it must be capable to recycle kick
pulses in a time shorter than the bunch separation, or 132 ns in the 140 x 121 scenario, implying a full rise
time less than 66 ns. In other word, it must have a band-width broader than 7.58 MHz. With regard to
the recycling time between kick pusles, the filling time of the damper pulse into the damper current plates
should also be taken into consideration. The switching on and off of the damper is usually performed via a
thyratron which can handle a voltage of up to roughly 60 ~ 100 kV. This sets a limit to the damper pulse
voltage. At the same time, a high power source is required to generate the required damper pulses to kick
the beam. For this reason, a damper design with low peak power is desired. As it turns out below, however,

lowering the peak power can sometimes lead to the undesired effect of lengthening the filling time.

We are going to estimate first the power required by a damper for correcting injection offsets. The
damper is placed in a location where the vertical betatron function is 8, = 100 m. Let the maximum
transverse beam offset there be Ay = 0.5 mm and we want to do the correction in n = 50 turns. Then the
angle of vertical deflection per turn by the kicker has to be

Ay = ﬁA—y =1x1077. (10.1)
yn

Let us consider a vertical magnetic kicker, which consists of two horizontal current plates inside a
rectangular core of ferrite. These current plates are of length ¢ and width w separated by a vertical distance
h. Each plate is connected at one end to a 50-Ohm RG5H8 coaxial cable. A positive current pulse is sent
into one current plate through the coaxial cable from one current source and a negative current pulse into
the other from another current source so that a horizontal magnetic flux is set up between the current
plates and the beam particles are kicked vertically. The other end of each current plate is terminated by a
Zs = 50  resistor hoping that the current pulse injected into each current plate will be absorbed without any
reflection. The beam current will also induce electromotive (emf) forces on the plates. These emf voltages

will be traveling in both directions and will also be absorbed without reflection.

Because of the high relative magnetic permeability of the ferrite, the magnetic field H is nearly zero
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inside the ferrite. Then between the current plates, the magnetic field H and magnetic flux density B are

given by
Zol
B=poH =22 (10.2)
cw
The inductance of one current plate is therefore
Zolh
L= ) 10.3
2cw ( )

Putting in w = h = 6 cm, the inductance per unit length is L/¢ = Zyh/(2cw) = 0.628 pH/m, which is larger
than the inductance £ = Z./c = 0.167 pH/m of the RG58 cable. Here, we assume that the medium inside
the cable has relative dielectric €, = 1 and permeability u,. = 1. We would like each current plate with
respect to the kicker shell to behave like a transmission line matched to the RG58 cable so that currents and
voltages can flow from the cable to the current plate and then the termination resistor without reflection.
Therefore capacitors must be added between the current plate and the kicker shell so that the characteristic

impedance equal to Z.. The total capacitor per unit length required is

c L hZ,

— == =2.51 nF . 10.4

¢~ 720 20078 " (104)
However, the phase velocity will become

Vp I 0z, 2wZ. (10.5)

C_c LC:C_L_ hZy

We obtain v, /¢ ~ 0.265 when h ~ w. Assuming dispersion is not important, the group velocity of the current
pulse will also be vg/c ~ 0.265.

The magnetic flux density B required to produce the required vertical beam deflection Ay’ in Eq. (10.1)

is given by
EAy
B PEAY (10.6)
ecl
From Egs. (10.1) and (10.2), the minimum current in the current plates is
BEAY' w
I=—F""—=~239A 10.7
Zol : (10.7)
The power dissipated is therefore
P=2I*7Z,=57T1W, (10.8)

where the factor 2 stands for 2 circuit systems, one for each current plate.

The reduction of transmission velocity from the coaxial cable to the current plate does have some
bearing on the current pulse from the generator. For example, if we need a current pulse of I = 2.39 A of
length ¢ = 1 m in the kicker current plate, the current sent out from the generator into the cable must be
reduced to Tvg/c = 0.634 A and the length of the pulse increased to fc/vy, = 3.77 m. The time for the pulse
to fill the 1-meter kicker is ¢/v, = 12.6 ns which is still small compared with the bunch spacing of 132 ns.

Since each current plate behaves like a transmission line, the positive current pulse will result also in a
positive voltage pulse V.= IZ.. An electric field of £ = 217, /h will be set up between the two current plates,

31



which will deflect the beam bunch vertically, but unfortunately in a direction opposite to the deflection by
the magnetic flux density. The ratio of the electric force to the magnetic force is, using Eq. (10.2),
& 2wz

~E = r (10.9)

r

which just equals v,/c and is 0.265 if w = h. Thus to accomplish the necessary kick the current pulse has to

be increased to
_ BEAYw 1

eZol 1—r
and the power becomes P = 1.06 kW. The peak voltage of the kicker pulse is IZ, = 162.5 V. Both the power
and voltage are not high at all.

~3.25 A, (10.10)

There has been an idea to lower the power consumption by lowering the characteristic impedance Z..
This can be done, for example, by connecting 6 RG58 cables in parallel so that Z. is reduced 6 folds to
8.33 ). More capacitors have to be inserted between the current plates and the kicker shell to bring down
the characteristic impedance. The result will reduce the phase velocity in the current plates by 6 folds to
0.0442¢. The current required will also be reduced because the ratio of the electric kick to magnetic kick
in the wrong direction will be lowered at the same time 6 folds to 0.0442. The power consumption now
becomes only 0.104 kW. However, the filling time of the 1-meter damper becomes ¢/v, = 75.5 ns, which is

longer than the half bunch spacing in the 140 x 121 scenario. Therefore, this idea is not practical.

Now let us discuss a vertical electric kicker, which consists of two horizontal voltage plates of width w,
length ¢, and separated by a vertical distance h. The two plates are connected at the upstream ends to a
voltage source via a 50-{) coaxial cable. The downstream ends are terminated by a Z. = 50 2 resistor. To
fire the kicker, a voltage pulse is sent into one of the horizontal plates to kick the bunch that passes by. We
also require the voltage pulse to be absorbed totally by the termination resistor without reflection. Thus
the two horizontal plates need to behave like a transmission line of characteristic impedance Z. also. The
capacitance of the plates per unit length is

¢

o w
12 n ChZ()

when w ~ h. This is smaller than the capacitance per unit length

~ 8.85 pF/m , (10.11)

C:

= 66.7 pF 10.12
- = 66.7 pF/m (1012)

of a RG58 cable. On the other hand, the two voltage plates as a transmission line will support a phase

velocity equal to the velocity of light. The inductance per unit length is therefore

L 14 hZy

—=——=—=1.26 uH 10.13

1= 20" ow pH/m (10.13)
which is larger than the inductance per unit length of the RG58 cable. This implies a characteristic impedance

of
L_ .t _ 1

C « w’
which is close to Zy = 377 Q if w ~ h. One way to reduce the characteristic impedance to Z. = 50 €2 is to

Zc|plates = (1014)

add capacitors between the two voltage plates. This will increase the capacitance between the two plates to

C L

T (10.15)
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and the phase velocity reduced to
v {Z. w2,
g =z 10.16
¢ cL hZy’ ( )

which is ~ 0.132 if w ~ h.

Now suppose the lower plate is grounded and the a voltage pulse V is passed into the upper plate, a
positively-charged beam particle will be deflected downward by a force eV/h. This voltage pulse will have
a current of I = V/Z., which generate a magnetic flux density B and will deflect the positive charge beam
upward instead by the force ~ efBcB. Because there is no ferrite, the magnetic field H will be about one half
less than that given by Eq. (10.2) and so will be the flux density B. The ratio of the electric to magnetic

forces is
£ 2w Z,

"=3B” h 7

which is about twice the phase velocity and is ~ 0.265 when w ~ h. Since the magnetic kick is larger than the

(10.17)

electric kick, this is in essence a magnetic kicker without ferrite. It appears that there is no transmission-line
kicker that relies mainly on electric kicks.
If we just consider the magnetic kick, the current required to produce a Ay’ =1 x 1077 kick is

7~ 28EAY'w 1
T eZol 1-—7

~6.50 A . (10.18)

This is twice the current needed in the magnetic kicker with ferrite and the reason is that without ferrite it
takes about twice the current to produce the same magnetic flux density. The power consumption is then
P =127, = 2.12 kW, which is twice the power for the ferrite kicker. This is because the current has been

doubled but there is only one circuit providing the current or voltage pulse.

In reality, it is difficult to have the two plates to form a transmission line, because the plates are often
close to the wall of the beam pipe or the kicker wall. For this reason, each plate should be considered
separately as a transmission line with respect to the kicker shell be powered by separate sources. However,

this will be exactly the same as the magnetic kicker we first discussed but in the absence of ferrite.

Usually. the particle beam is encircled in a ceramic pipe inside the kicker. If the ceramic pipe has a
thin layer of metallic coating, the beam particles will be blocked from all static electric fields. Under this

situation, the electric force that kicks the beam in the wrong direction will be eliminated.

The kicker system discussed above will be able to damp any transverse coupled-bunch instabilities in
the dipole (m=0) mode produced by wake fields between bunches that give an average transverse deflection

at 150 GeV of Ad A )
g 2 = — =2.0x10"* rad/m/turn . (10.19)
Ay Ay kicker 6?!”

The resistive-wall impedance that drives the transverse coupled-bunch instability has the value of
| Re Z, | = 66.7 MQ/m at frequency —0.43 fo. For 140 proton bunches. it will create in each turn a deflection

of
Ay eMIL|ReZ
Y _MLIREZL] oy qp-s rad/m/turn . (10.20)
Ay 2F
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Therefore, the damper studied above should be able to damp this instability as well. We would like to point
out that the resistive-wall driven coupled-bunch instability oscillates with a very low frequency so that there

is no need to use such a fast damper considered here.

XI CONCLUSIONS

(1) We have estimated the longitudinal and transverse impedances of the Tevatron vacuum chamber.
Below 10 MHz, the resistive wall and the Lambertson magnets dominate. Between 10 MHz and 1 GHz,
the inductive parts of the bellows and BPM contributions become important. The resonant peaks of the
separators and the bellows show up above 1 GHz. Therefore, from 0.5 to a few GHz, it is reasonable to
assume that Re Z/n ~Im Z/n~3 Qand ReZ, ~Im Z, ~ 3 MQ/m.

For a rms bunch length of 37 cm, microwave instabilities, both longitudinal and transverse, can be
driven by frequencies as low as ~ 0.1 GHz. Thus lowering the impedances in the low-frequency region is
important. For example, if the laminations of the Lambertson magnets can be shielded, the impedances can
be reduced by about 2/3.

(2) Potential-well distortion by the inductive part of the longitudinal impedance is not severe. The
bunch will be lengthened by about 1.5 to 2.0%.

(3) Longitudinal microwave instability is way below the Boussard-modified Keil-Schnell limit, and there-
fore should not occur.

(4) Longitudinal coupled-bunch instability driven by the higher-order modes in the Tevatron cavity
will be a problem. A longitudinal bunch-by-bunch damper for 7-bucket spacing is required. We also suggest

passive damping of these higher-order modes.

(5) Because in Run II the bunch length will be shorter than in the Run I, the growth of longitudinal
head-tail modes driven by the fundamental rf resonance should be much reduced. However, their growths

driven by the broad band impedance will be increased.

(6) It appears that the transverse microwave instability is slightly over the stability limit of damping
by momentum spread. However, operating with a positive chromaticity, for example £ = 410, will be able

to stabilize the situation.

(7) The transverse coupled-bunch instability driven by the resistive wall impedance appears to be the
most severe collective instability here. For the 140 x 121 scenario, the growth rate can be as high as 75 s~1.
It is lowered to 15 s~! even when the ring is operated with the chromaticity of ¢ = +10. However, with such
a high chromaticity the m =1 quadrupole mode may have a sizable growth rate. Therefore, a transverse
damper is necessary to cope with the situation. Although the transverse coupled-bunch instabilities can also

be driven by the higher-order modes in the rf cavities, the growth rates are found to be insignificantly small.

(8) Transverse head-tail instability driven by the short-range part of the wake can occur only when

34



the chromaticity is nonzero. It is driven mostly by the resistive wall impedance. If £ = +10 say, the m=0
mode is stable while the m = 1 mode has a growth rate of ~ 4 s~! and can be damped by a small tune

spread. All the higher modes have much smaller growth rates.

(9) We estimate that to damp an injection error of 0.5 mm in 50 turns at a location where the betatron
function is § = 100 m, the transverse kicker must have a minimum power of 355 W. Such a bunch-by-bunch
kicker system will also be powerful enough to damp all transverse coupled-bunch instabilities in the dipole
m=0 mode.
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